

Scheduling and Thread
Management with RTEMS

Joel Sherrill, Ph.D. Gedare Bloom, Ph.D.

Joel.Sherrill@oarcorp.com
OAR Corporation

Huntsville Alabama USA

gedare@gwu.edu
George Washington University

Washington DC USA

August 2013

mailto:Joel.Sherrill@oarcorp.com
mailto:gedare@gwu.edu

RTEMS Applications

http://www.rtems.org 2 Images Credit: NASA and ESA

Milkymist MRO/Electra

TECHNIC 1

DAWN

Proba-2 Herschel

ST-5

Solar Dynamics Observatory

Planck

Galileo IOV

LISA
Pathfinder

Avenger
BMW Superbike

Avenger

 Curiosity

ARTEMIS

Outline

• Real-Time Embedded Systems Introduction

• RTEMS Overview

• RTEMS Thread Set Management

• RTEMS Thread Scheduling

• RTEMS Scheduling Simulator

• SMP Application Challenges

• Open Areas

http://www.rtems.org 3

Real-Time Embedded Systems
Background

http://www.rtems.org 4

Real-Time?

• In computing, the term real-time means …

– the correctness of the system depends not only on
the logical result of the computations but also on
the time at which the results are produced

• Examples include:

– Flight control systems, robotics, networking and
telecom equipment, traffic signals

http://www.rtems.org 5

Predictable is better than fast and variable

Embedded System?

• An embedded system is …

– any computer system which is built into a larger
system consisting of multiple technologies such as
digital and analog electronics, mechanical devices,
and sensors

• Examples include:

– Consumer Electronics, Control Systems, Routers

http://www.rtems.org 6

Anything that contains a computer
 where it isn’t apparent to the user there is a computer

Operating System?

• An operating system is …

– a collection of software services and abstraction
layers that enable applications to be concerned
with business logic rather than the specifics of
device control and protocol stacks.

• Enables application portability across
hardware platforms

http://www.rtems.org 7

An operating system is a Master Control Program (MCP)

Real-Time Operating System?

• A real-time operating system is …

– an operating system designed to provide
applications services which assist in meeting
application requirements which including timing.

• Timing requirements are typically related to
interaction with external devices, other
computers, or humans.

http://www.rtems.org 8

OS is predictable and
aids in the construction of predictable applications

Real-Time Embedded Systems

• Include timing requirements

• Size, Weight, and Power (SWaP) Concerns

• Hardware is often custom

• Safety and/or reliability are concerns

• Debugging is often difficult

• User interface not present or non-standard

• Interact with environment

http://www.rtems.org 9

We interact with real-time embedded systems on a daily basis

Real-Time/Embedded Systems

• Automotive control

– engine control

– active suspension

– anti-lock brakes

• Cell phone

• Industrial control

• Telecom switch

• GPS

• Consumer electronics

– smart televisions

– set top boxes

– DVD/Blu-ray

– MP3 player

• Air traffic management

• Traffic signals

• Medical devices

http://www.rtems.org 10

RTEMS is designed for deeply embedded systems

Real-Time Executive for Multiprocessor Systems

http://www.rtems.org 11

RTEMS in a Nutshell

• RTEMS is an embedded real-time O/S
– deterministic performance and resource usage

• RTEMS is free software
– no restrictions or obligations placed on fielded

applications

• Supports open standards like POSIX

• Available for 15+ CPU families and ~175 BSPs

• Community driven development process

• Training and support services available

http://www.rtems.org 12

RTEMS in OS Spectrum

http://www.rtems.org 13

Real-Time Focus

RTEMS
VxWorks
ThreadX
Nucleus

 GNU/Linux
*NIX
*BSD
MINIX

LynxOS

Space Separation with
POSIX Processes

Single
Process

Space Separation
with ARINC
Partitions

ARINC 653 based
RTOSes

MS-Windows

General Purpose Focus

Other
Separation

RT-Linux
Solaris

Does not address hypervisors or embedded OSes which are not
focused on real-time

RTEMS Features at a Glance

http://www.rtems.org 14

• RTEMS is a Commercial Grade Real-Time Operating System

• Truly free in price, liberty, and end user requirements
– All source code for OS, support components, tests,

documentation, and development environment
– Test coverage is openly reported

• High performance with deterministic behavior

• Low overhead with predictable resource consumption

– Full executables currently as small as 16K

• Highly configurable with unused features left out by linker

More RTEMS Features

• POSIX/Single Unix Specification Support

– Single process, multi-threaded

• Classic API with hard real-time features

• Multiple file systems (e.g. FAT, NFS, RFS, IMFS)

• FreeBSD TCP/IP w/httpd, ftpd and telnetd

• FreeBSD USB w/removable mass storage

• Customizable shell with ~100 commands

http://www.rtems.org 15

Advanced RTEMS Features

• Symmetric Multiprocessing (SMP)

– SPARC, ARM, x86, and PowerPC

• Asymmetric and Distributed Multiprocessing

• Priority Inversion Avoidance Protocols

– Priority Inheritance Protocol

– Priority Ceiling Protocol

• Statistics on stack usage, CPU usage, and
periods

http://www.rtems.org 16

RTEMS Community Driven Focus

• Without users, project has no reason to exist!

• Users drive requirements

– Please let us know what you need

• Users provide or fund many improvements

– Again those reflect your requirements

• Most bug reports are from users

http://www.rtems.org 17

RTEMS Evolves to Meet User Needs

 RTEMS Project Participation In
Student Programs

• Google Summer of Code (2008-2013)

– Over 40 students over the six years

• Google Code-In (2011-2013)

– High school students did ~200 tasks for RTEMS

– Included only ten FOSS projects in 2012-13

• ESA Summer of Code In Space (2011-2013)

– Small program with only twenty FOSS projects
involved

http://www.rtems.org 18

Architectures Supported by RTEMS

http://www.rtems.org 19

Architecture 4.6 4.7 4.8 4.9 4.10 Dev

Altera NIOS II No No No1 No1 No1 Yes

ADI Blackfin No No Yes Yes Yes Yes

ARM with many CPU models Yes Yes Yes Yes Yes Yes

ARM/Thumb No No No Yes Yes Yes

Atmel AVR No Partial Partial Partial Partial Partial

AMD A29K Yes No No No No No

HP PA-RISC Yes No No No No No

Intel/AMD x86 (i386 and above) Yes Yes Yes Yes Yes Yes

Intel i960 Yes No No No No No

Lattice Semiconductor Micro32 No No No No Yes Yes

Microblaze No No No No No Partial

MIPS including multiple ISA levels Yes Yes Yes Yes Yes Yes

Architectures Supported by RTEMS

http://www.rtems.org 20

Architecture 4.6 4.7 4.8 4.9 4.10 Dev

Moxie No No No No No Yes1

Freescale MC680xx and MC683xx Yes Yes Yes Yes Yes Yes

Freescale Coldfire Yes Yes Yes Yes Yes Yes

OpenCores OR32 Yes No No No No No

PowerPC Yes Yes Yes Yes Yes Yes

Renesas H8/300 Yes Yes Yes Yes Yes Yes

Renesas M32C No No No No Partial Partial

Renesas M32R No No No No Partial Partial

Renesas SuperH (SH1 through SH4) Yes Yes Yes Yes Yes Yes

SPARC including ERC32 and LEON Yes Yes Yes Yes Yes Yes

SPARC64 No No No No No Yes

TI C3x/C4x Yes No No No No No

NEC V850 No No No No No Yes

(1) Moxie support is complete but pending merger to main repository

RTEMS Architecture

http://www.rtems.org 21

GUIs

SAPI

Hardware

Classic API POSIX API Shell

BSD TCP/IP Stack

POSIX Compliant
Filesystem

RPC/

XDR

tftp ftpd

PPP

SNMP

CORBA

Performance

Monitoring API

httpd

DHCP BOOTPICMP

MicroWindows

NanoX

OpenGUI

FLTK

picoTk

Add-on Libraries

Tcl ncurses

Python

readlinezlib

telnetd Remote

Debugging

Ada95

GNAT

Classic

API

Bindings FTP
client

NFS
client

TFTP
client

DEVFS FAT

IMFS TARFS

RFS

Board Support Package

Architecture

Port

LibCPU

LibBSP

Shared
BSP LibChip

Board

Specific

Time

Management
Scheduler

Threads
Communications

& Synchronization

Memory

Allocation

Supercore

Lua

What does RTEMS Schedule?

• Multiple threads within a single process

• Thread communication and synchronization

– Semaphores, mutexes, message queues, events,
conditional variables, periods, barriers, etc.

• Threads change state and …

– Multiple algorithms available for scheduling them

http://www.rtems.org 22

The purpose of an RTEMS scheduling algorithm is to
select the set of threads which will execute

Thread State Diagram

http://www.rtems.org 23

DORMANT

READY

EXECUTING BLOCKED

create

delete

delete

delete delete

block or
suspend

start

dispatch
suspend

unblock or
resume

yield or
preempt

NON-EXISTENT

NON-EXISTENT

N
O

N
-E

X
IS

T
E

N
T

N
O

N
-E

X
IS

T
E

N
T

Non-existent State

http://www.rtems.org 24

• State before a task is created

• State after a task is deleted

• Internally, the TCBs are all preallocated at

initialization time but they are not associated with a
user task.

• During the creation process, TCBs are associated with
stacks and user application code

Dormant State

http://www.rtems.org 25

• State after a task is created
• State before a task is started
• Cannot compete for resources

• In the Classic API, creating a task transitions that task
from non-existent to dormant

• In the POSIX API, a thread is created and started as
part of its initialization process and thus is never in
the dormant state from a user’s perspective

Ready State

http://www.rtems.org 26

• State after a task is started

• State after a blocked task is readied

• State after the processor is yielded

• Task may be allocated to the processor

• Scheduler considers the set of ready tasks the
candidates for execution

Blocked State

http://www.rtems.org 27

• State after a blocking action is taken

• Task may not be allocated to the processor

• The task is blocked waiting for a readying action such
as

– Resume

– Timeout

– Release of resource

– Delay ended

Executing State

• State of task when allocated the processor

• Selected from set of ready tasks based upon
current scheduling criteria

• RTEMS internal variable
– _Thread_Executing points to the TCB of the currently

executing thread

• After 4.10:
– _Thread_Executing is now a macro

– SMP support means one executing thread per core

http://www.rtems.org 28

RTEMS Thread Scheduling

• Logically RTEMS just manages sets of threads

– one or more is executing

– one or more is ready

– one or more is waiting for a resource or time

• Application can set various parameters at run-
time on a per thread basis

– priority

– preemption

– …

 http://www.rtems.org 29

Scheduler

RTEMS Thread Set View

http://www.rtems.org 30

Blocked Threads

Scheduled
(Executing)

UP: 1 set of 1
SMP: 1 set of N

Ready

UP: 1 set of N
SMP: 1 set of N

Dispatch
Thread(s)

Preempt
Yield

Block

Unblock

Mutex 1

…

Mutex N

Message Queue 1

…

Message Queue N

Time

….

UP: M sets of N
SMP: M sets of N

Scheduling Mechanisms

http://www.rtems.org 31

• Priority

• Preemptive

• Timeslicing

• Manual Round-Robin

• Rate Monotonic

Priority

http://www.rtems.org 32

• User assigned on a task-by-task basis

• 256 priority levels supported by SuperCore
– SuperCore 0 is most important, 255 is least

– Classic API priority levels of 1 – 255 with 1 being highest

– POSIX API priority levels of 1 – 255 with 1 being lowest

• Round-robin within priority group

• Allows application control over distribution of processor to
tasks

IDLE task is SuperCore priority 255 and never yields!
Do NOT use this priority level via ANY API

Preemption

http://www.rtems.org 33

• A task's execution is interrupted by another task
• Higher priority tasks interrupt the execution of a

lower priority task
• Task mode - preemption

– When enabled, task may be preempted by a higher
priority ready task

– When disabled, task must voluntarily give the
processor up

• Classic API tasks are preemptible by default
• POSIX API threads are preemptible by default

Timeslicing

http://www.rtems.org 34

• Limits task execution time (processor time allocated to the
task)

• Fixed time quantum per timeslice which is user configurable

• Task mode - timeslicing
– Disabled - unlimited execution time

– Enabled - limited execution time

• Classic API task’s timeslice allotment is reset each time it is
context switched in

• POSIX API thread may use this algorithm or not have it’s
allotment reset until it has been consumed

Timeslicing Scheduling Actions

http://www.rtems.org 35

• Upon expiration of the timeslice

– Another task of the same priority is given to the processor

– Immediate reallocation of processor when only task of
priority group

• Priority and preemption will affect timesliced tasks

Manual Round-Robin

http://www.rtems.org 36

• Voluntary yielding of the processor

• Immediate removal from the processor

• Place at the end of ready chain priority group

• Task will not lose control of the processor when no
other tasks at this priority are ready

Rate Monotonic

http://www.rtems.org 37

• Rate monotonic scheduling algorithm ensures that all
threads are schedulable if requirements are met

– based on using periodic threads

• Assumes thread priorities assigned per Rate
Monotonic Priority Assignment Rule

– higher rate threads are more important

• A thread set is said to be schedulable if all threads in
that set meet their deadlines

Priority Based Schedulers

• Allows for the immediate response to external
events

• Determines which ready task(s) are allocated to the
processor

• Algorithm may additionally take into account
preemption and timeslicing for each thread

http://www.rtems.org 38

The goal of a priority based scheduler is to
guarantee that the highest priority set of

ready tasks executes

Deterministic Priority Scheduler (DPS)

• Uniprocessor priority based scheduler

• Array of linked list of TCBs with one list per
priority

• Head of lowest array entry with TCBs on list is
the highest priority task

• Bit map of priorities which have one or more
ready tasks

http://www.rtems.org 39

Optimized for deterministic (e.g. fixed time) execution

DPS Two Level Priority Bitmap

http://www.rtems.org 40

Bit Number Priorities

0 0 - 15

1 16 – 31

2 32 – 47

3 48 – 63

4 64 – 79

5 80– 95

6 96 – 111

7 112 - 127

8 128- 143

9 144 – 159

10 160 – 175

11 176 – 191

12 192 – 207

13 208 – 223

14 224 – 239

15 240 - 255

Major Bitmap Minor Bitmap Array
Array Index Individual Bits for Priorities

0 0 - 15

1 16 – 31

2 32 – 47

3 48 – 63

4 64 – 79

5 80– 95

6 96 – 111

7 112 - 127

8 128- 143

9 144 – 159

10 160 – 175

11 176 – 191

12 192 – 207

13 208 – 223

14 224 – 239

15 240 - 255

DPS Priority Bitmap Example

http://www.rtems.org 41

• Threads at priorities 1 and 255
– Priority 1 has major 0 and minor 1
– Priority 255 has major 15 and minor 15

• Major Bitmap:

– 0x8001

• Minor Bitmap Array:
– {0x0002, 0x0000 , 0x0000 , 0x0000,

 0x0000, 0x0000 , 0x0000 , 0x0000,
 0x0000, 0x0000 , 0x0000 , 0x0000,
 0x0000, 0x0000 , 0x0000 , 0x8000}

Simple Priority Scheduler (SPS)

• Uniprocessor priority based scheduler

• Single linked list of task control blocks (TCBs)
ordered by priority

• First task on the ready chain is the highest
priority task

• Lower memory footprint than DPS but not
deterministic

http://www.rtems.org 42

Text book view of priority scheduling

Earliest Deadline First (EDF) Scheduler

• Optional Uniprocessor Scheduling Algorithm

• Rate Monotonic periods are treated as deadlines

– deadline == start of next period

• Logically two bands of tasks

– those with deadlines (e.g. they are periodic)

– those without deadlines

• Tasks without deadlines are background tasks

• Ready task with the next deadline is selected to
run

http://www.rtems.org 43

Constant Bandwidth

Server (CBS) Scheduler
• Optional Uniprocessor Scheduling Algorithm

• Extension to EDF Scheduler
– adds capability to mix sporadic and periodic tasks

• Per period CPU budget associated with each CBS task
– When budget exceeded, callback invoked

• “QoS” library provided to interact with scheduler

• Fundamental rules
– Task cannot exceed its registered per period CPU budget

– Task cannot be unblocked when the time between
remaining budget and remaining deadline is higher than
declared bandwidth

http://www.rtems.org 44

RTEMS Simple SMP Scheduler

• This is an implementation of a Global Job-
Level Fixed Priority Scheduler (G-JLFP)

• Extension of uniprocessor Simple Priority
Scheduler (SPS) to multiple cores

• First scheduler implemented as simple

http://www.rtems.org 45

RTEMS Deterministic Priority SMP

Scheduler
• This is an implementation of a Global Job-

Level Fixed Priority Scheduler (G-JLFP)

• Extension of uniprocessor Deterministic
Priority Scheduler (DPS) to multiple cores

• Implemented in a manner that shares much
code with the Simple SMP Scheduler

– different data structure for the ready set

http://www.rtems.org 46

RTEMS Scheduling Framework

• A scheduler is a set of methods which are invoked
indirectly at specific points in the system timeline
– initialization, thread creation, yield, clock tick, blocking,

etc.

• One of the many configuration parameters at
application compilation/link time is the desired
scheduler

• Scheduling algorithm may be selected such that is
meets application desired
– scheduling algorithm behavior
– time and memory requirements

• Supports user providing unique scheduler WITHOUT
modifying RTEMS source

http://www.rtems.org 47

Framework Plugin Points –

Initialization Support
• Initialize the scheduling algorithm

– void (*initialize)(void);

• Scheduler per thread information
allocation/deallocation

– void * (*allocate)(Thread_Control *);

– void (*free)(Thread_Control *);

http://www.rtems.org 48

Framework Plugin Points –
Primary Thread Operations

• Remove thread from scheduling decisions
– void (*block)(Thread_Control *);

• Add thread to scheduling decisions

– void (*unblock)(Thread_Control *);

• Extract a thread from the ready set

– void (*extract)(Thread_Control *);

• Voluntarily yields the processor per the scheduling

policy
– void (*yield)(Thread_Control *thread);

http://www.rtems.org 49

Framework Plugin Points
Priority Change Support

• Update scheduler cached information per thread
– void (*update)(Thread_Control *);

• Perform the scheduling decision logic (policy)
when required
– void (*schedule)(void);

• Enqueue a thread into its priority group
– void (*enqueue)(Thread_Control *);

– void (*enqueue_first)(Thread_Control *);

http://www.rtems.org 50

 Framework Plugin Points

• Compares two priorities
– int (*priority_compare)(Priority_Control, Priority_Control);

• Invoked upon release of a new job. Supports deadline based

schedulers
– void (*release_job) (Thread_Control *, uint32_t);

• Perform scheduler update actions required at each clock tick

– void (*tick)(void);

• Starts the idle thread for a particular processor.

– void (*start_idle)(Thread_Control *thread, Per_CPU_Control
*processor);

http://www.rtems.org 51

RTEMS Scheduling Simulator

• Host based tools using subset of RTEMS
source code

• Executes scripts which exercise scheduling
algorithm based on predictable events

• Useful for …
– debugging new algorithms

– testing with varying core quantities

• Very deterministic and does not require target
hardware

http://www.rtems.org 52

SMP Application Challenges

• Multiple cores creates new opportunities for…
– true concurrency

– cost-effective performance improvements

– threading behavior assumptions to be violated

– critical section assumptions to be violated

• Multiple threads WILL be running at the same time

• Increases the complexity of analyzing an application

• Uniprocessor embedded applications only had to
concern themselves with ISRs and task switches

http://www.rtems.org 53

Race Conditions

• With there are multiple cores and it should be
assumed that a thread is executing on each of
those threads

• Race conditions in existing code will be
exposed

http://www.rtems.org 54

SMP means race conditions which never or rarely
happened in uniprocessor systems are likely to occur.

Highest Priority Task Assumption

• With multiple cores, again it should be
assumed that a thread is executing on each of
those threads

• Each thread represents an opportunity for the
implicit critical section to be violated

http://www.rtems.org 55

When the highest priority task is executing,
nothing can externally alter its execution except a

hardware interrupt

Disable Preemption Assumption

• With multiple cores, again it should be
assumed that a thread is executing on each of
those threads

• Each thread represents an opportunity for the
implicit critical section to be violated

http://www.rtems.org 56

When a thread disabled preemption, it could assume
that no other thread would execute until it enabled

preemption again

Disable Interrupts Assumption

• Altering the interrupt disable mask only impacts
the core the thread is executing on
– interrupts may still occur on other cores

• In addition, those other threads can execute
other threads

• Multiple opportunities for the implicit critical
section to be violated

http://www.rtems.org 57

When a thread disabled CPU interrupts, it could
assume that no other thread or ISR would execute

until it enabled interrupts again

Per Task Variables Assumption

• Usually a pointer to a library’s context

• Assumes one memory image and one thread

• With SMP, now there is one memory image
and multiple threads

– the single memory location can’t be right for all

http://www.rtems.org 58

A task variable is a set of memory locations that are
context switched with the thread

Caching Assumptions

• In uniprocessor systems, only task switches and
interrupts disrupted the cache

• In SMP…
– Cache coherence is critical but can have significant

impacts on memory bus bandwidth
– Execution patterns on other cores can negatively

impact each other

• This is a hard problem which will impact system
design

http://www.rtems.org 59

Each core has an impact on memory caching

Bare Metal SMP Debugging

• Do the tools meet needs of real users?
– presentation of per core parallel activities

– what does it mean to step (e.g. one core, all)

– SMP aware target resident debug stubs

• Expensive hardware assist debugging devices are
likely to be the only option

• Free and open source world has room to improve

• Reference: http://kiwichrisj.blogspot.com.au/

http://www.rtems.org 60

Debugging SMP systems is much more complicated

http://kiwichrisj.blogspot.com.au/

SMP Research/Open Areas

• Practical scheduling algorithms

– implementable given real world constraints

• Best practices on thread to core assignments

• Debugging aids

• System and application tracing

• Worst case execution analysis

http://www.rtems.org 61

SMP is beginning to be considered for safety critical systems.
There are challenges ahead

Conclusion

• Introduction to Real-Time Embedded Systems

• Overview of RTEMS

• RTEMS Thread Scheduling

• RTEMS Thread Set Management

• Challenges and Opportunities

http://www.rtems.org 62

Contact Information

Joel Sherrill, Ph.D.

OAR Corporation
Huntsville Alabama USA

Joel.Sherrill@oarcorp.com

Gedare Bloom, Ph.D.

George Washington University
Washington DC USA

gedare@gwu.edu

mailto:Joel.Sherrill@oarcorp.com
mailto:gedare@gwu.edu

